

Stephen Baker

Where do we go next with AMR

Ho Chi Minh City

10th August 2024

Cambridge Institute for Therapeutic Immunology and Infectious Disease

2007-2019 (Vietnam)

The gold

open Biology[®]

rsob.royalsocietypublishing.org

6

Research

Cite this article: Baker S, Holt KE, Clements ACA, Karkey A, Arjyal A, Boni MF, Dongol S, Hammond N, Koirala S, Duy PT, Nga TVT, Campbell JI, Dolecek C, Basnyat B, Dougan G, Farrar JJ. 2011 Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol 1: 110008. http://dx.doi.org/10.1098/rsob.110008 Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission

Stephen Baker^{1,2,*,†}, Kathryn E. Holt^{3,4,†}, Archie
C. A. Clements⁵, Abhilasha Karkey², Amit Arjyal², Maciej
F. Boni^{1,6}, Sabina Dongol², Naomi Hammond⁴, Samir Koirala²,
Pham Thanh Duy¹, Tran Vu Thieu Nga¹, James I. Campbell¹,
Christiane Dolecek^{1,2}, Buddha Basnyat², Gordon Dougan⁴
and Jeremy J. Farrar^{1,2}

nature microbiology

Explore content v About the journal v Publish with us v Subscribe

<u>nature</u> > <u>nature microbiology</u> > <u>letters</u> > article

Letter | Published: 20 January 2020

Commensal *Escherichia coli* are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant *Shigella sonnei*

Pham Thanh Duy, To Nguyen Thi Nguyen, Duong Vu Thuy, Hao Chung The, Felicity Alcock, Christine Boinett, Ho Ngoc Dan Thanh, Ha Thanh Tuyen, Guy E. Thwaites, Maia A. Rabaa & Stephen Baker 🖂

We live in a bacterial world

How do antimicrobials work?

Resistance is inevitable (mutation)

We need to talk about sex

And we are running out of options

AMR

- The prevalence of AMR is increasing worldwide
- Seeing an increase in resistant infections that are untreatable
- 700,000 AMR related deaths per year globally, predicted to rise to 10 million by 2050
- Economic cost by 2050 could be up to \$100 trillion USD

Deaths attributable to antimicrobial resistance every year by 2050

Source: Review on Antimicrobial Resistance 2014

Almost all drug resistant bacteria come from Asia....

J Antimicrob Chemother 2018; **73**: 2546–2554 doi:10.1093/jac/dky231 Advance Access publication 4 July 2018

Journal of Antimicrobial Chemotherapy

Quantifying antimicrobial access and usage for paediatric diarrhoeal disease in an urban community setting in Asia

Le Thi Quynh Nhi^{1,2}, Ruklanthi de Alwis^{1,3}, Phung Khanh Lam¹, Nguyen Nhon Hoa², Nguyen Minh Nhan², Le Thi Tu Oanh², Dang Thanh Nam², Bui Nguyen Ngoc Han², Hoang Thi Thuy Huyen², Dinh Thi Tuyen², Vu Thuy Duong^{1,4}, Lu Lan Vi⁵, Bui Thi Thuy Tien⁶, Hoang Thi Diem Tuyet⁶, Le Hoang Nha⁷, Guy E. Thwaites^{1,3}, Do Van Dung² and Stephen Baker^{1,3,8}*

¹The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; ²University of Medicine and Pharmacy in Ho Chi Minh City, Ho Chi Minh City, Vietnam; ³Centre for Tropical Medicine,

Carrique-Mas et al. Antimicrobial Resistance and Infection Control (2020) 9:16 https://doi.org/10.1186/s13756-019-0671-7

Antimicrobial Resistance and Infection Control

SHORT REPORT

An estimation of total antimicrobial usage in humans and animals in Vietnam

Check for updates

Juan J. Carrique-Mas^{1,2*}⁽⁶⁾, Marc Choisy^{1,3,4}, Nguyen Van Cuong¹, Guy Thwaites^{1,2} and Stephen Baker^{1,5}

Contents lists available at ScienceDirect International Journal of Antimicrobial Agents journal homepage: www.elsevier.com/locate/ijantimicag

International Journal of Antimicrobial Agents 54 (2019) 269-270

Letter to the Editor

Affordability of antimicrobials for animals and humans in Uietnam: A call to revise pricing policies

Sir,

A recent review in the International Journal of Antimicrobial anti-

(0.55 US\$ cents) and sulfamethoxazole (0.50 US\$ cents). Vietnam is among the countries where AMU is expected to increase rapidly in the coming years [3]. It has been suggested that increasing user fees may deter excessive AMU in food animal production, and the increased revenues could be used to mitigate the consequences of antimicrobial resistance [4].

Table 1

The 10 most common antimicrobials used by a cohort of 112 farmers investigated over 270 cycles of production, and the prices of animal daily dose kg (ADDkg)

					-
Product	Antimicrobial active principle	Volume (L) of antimicrobial solution prepared per sachet of product (prophylaxis/therapy)	No. of ADD _{kg} per sachet (prophylaxis/therapy)	Cost of 1 ADD _{kg} (range) (in US\$ cents)	
				Prophylaxis	Therapeutic
1	Colistin + oxytetracycline	250/100	1111/444	0.07 (0.06-0.17)	0.19 (0.14-0.43)
2	Colistin + oxytetracycline	-/100	-/444	-	0.28 (0.10-0.48)
3	Colistin + gentamicin	-/50	-/222	-	0.44 (0.33-0.62)
4	Colistin + oxytetracycline	100/50	444/222	0.51 (0.29-0.58)	1.02 (0.58-1.16)
5	Oxytetracycline + streptomycin	-/50	-/222	-	0.42 (0.19-0.58)
6	Colistin + oxytetracycline	100/50	444/222	0.20 (0.15-0.43)	0.40 (0.29-0.97)
7	Sulphamethoxazole + thiamphenicol	67/33	296/148	0.51 (0.22-0.72)	1.03 (0.43-1.45)
8	Methenamine	100/67	444/296	0.53 (0.43-0.63)	0.79 (0.65-0.94)
9	Doxycycline + tylosin	400/200	1778/889	0.12 (0.04-0.16)	0.23 (0.07-0.31)
10	Gentamicin + tylosin	100/50	444/222	0.43 (0.14-0.58)	0.85 (0.29-1.15)

NI, not indicated.

Prices are expressed in US\$ cents, based on an exchange rate of 1 US\$=23 319 VND (23 September 2018)]. The products are sorted by frequency of use. All products were purchased as 100-g sachets.

MDR hypervirulent Klebsiella in India

The role of the microbiome

The Journal of Infectious Diseases

SUPPLEMENT ARTICLE

The Gut Microbiome of Healthy Vietnamese Adults and Children Is a Major Reservoir for Resistance Genes

Against Critical Antimicrobials

Joana Pereira-Dias,¹² Chau Nguyen Ngoc Minh,³ Chau Tran Thi Hong,³ To Nguyen Thi Nguyen,³ Tuyen Ha Thanh,³ Caroline Zellmer,¹² Hao Chung The,³ Lindsay Pike,⁴ Ellen E. Higginson,¹² and Stephen Baker^{1,2,0}

¹University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom, ²Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom, ³Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, and ⁴The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom

Figure 3. Relative abundance of antimicrobial resistance (AMR) genes in fecal samples from healthy Vietnamese participants. Plot generated by reads per kilobase per million mapped reads (IPRKM). Samples are stratified by age group (ID-23 months, 2–5 years, and adults), and each AMR gene ly-axisi, is organize by antimicrobial class (aminoglycosides, β-lactamases, fosfornycin, fluoroquinolones, glycopeptides, MLS [macrolide, lincosamide, and streptogramin], chloramphenicol, sulfonamides, tetracyclines, and trimethorymi.

What can we do?

New tools: The Opera Phenix

Clinical ESBL Klebsiella pneumoniae with ciprofloxacin

Predicting drug resistance via imaging and machine learning

Monoclonal antibodies

MICROBIAL GENOMICS

Bases to Biology

Research Paper

Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward

Mark B. Schultz,^{1,2} Duy Pham Thanh,³ Nhu Tran Do Hoan,³ Ryan R. Wick,^{1,2} Danielle J. Ingle,^{1,2} Jane Hawkey,^{1,2} David J. Edwards,^{1,2} Johanna J. Kenyon,^{4,5} Nguyen Phu Huong Lan,^{3,6} James I. Campbell,³ Guy Thwaites,³ Nguyen Thi Khanh Nhu,^{3,6} Ruth M. Hall,⁴ Alexandre Fournier-Level,⁷ Stephen Baker^{3,6} and Kathryn E. Holt^{1,2}

C3b Deposition FITC Geomean (Fold change/Isotype control)

Monoclonal antibodies

Monoclonal antibodies

PLOS GLOBAL PUBLIC HEALTH

Check for

updates

RESEARCH ARTICLE

Clinical and laboratory factors associated with neonatal sepsis mortality at a major Vietnamese children's hospital

Nguyen Duc Toan^{1,2,3}, Thomas C. Darton⁴, Nguyen Hoang Thien Huong^{1,5}, Le Thanh Hoang Nhat², To Nguyen Thi Nguyen², Ha Thanh Tuyen², Le Quoc Thinh¹, Nguyen Kien Mau¹, Pham Thi Thanh Tam², Cam Ngoc Phuong⁵, Le Nguyen Thanh Nhan^{1,2}, Ngo Ngoc Quang Minh¹, Ngo Minh Xuan³, Tang Chi Thuong^{3,7}, Nguyen Thanh Hung^{1,3,5}, Christine Boinett⁶, Stephen Reece⁹, Abhilasha Karkey¹⁰, Jeremy N. Day^{2,11}, Stephen Baker^{1,2,13}*

 Clinical Departments, Children's Hospital 1, Ho Chi Minh City, Vietnam, 2 Hospital for Tropical Diseases, Wellcome Trust Africa and Asia Programmes, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam, 3 Department of Paediatrics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam, 4 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom, 5 Department of Paediatrics, Vietnam National University School of Medicine, Ho

The takeaways

- I am applied microbiologist working in global health
- AMR is a major global health care challenge
- We need new ideas in science, funding and policy
- We have access to a whole host of possibilities
- Some mechanisms to approach this
 - Repurpose
 - Diagnostics
 - Vaccines
 - New epidemiology
 - mAbs
- We really require some direction and some innovation that won't be supplied by pharma

Collaboration, collaboration, collaboration

The group at University of Cambridge

OUCRU Vietnam

OUCRU Nepal

Oxford University UK

Kymab/Sanofi

The Sanger Institute

GSK Tres cantos

GSK Siena

LSHTM

Many UK collaborators

Many Overseas collaborators

And you for listening

